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ABSTRACT

A two-step hybrid perturbation—Galerkin method to solve a variety of
applied mathematics problems which involve a small parameter 1is presented.
The method consists of: (1) the use of a regular or singular perturbation
method to determine the asymptotic expansion of the solution in terms of the
small parameter; (2) construction of an approximate solution in the form of a
sum of the perturbation coefficient functions multiplied by (unknown) ampli-
tudes (gauge functions); and (3) the use of the classical Bubnov-Galerkin
method to determine these amplitudes. This hybrid method has the potential of
overcoming some of the drawbacks of the perturbation method and the Bubnov-
Galerkin method when they are applied by themselves, while combining some of
the good features of both. The proposed method is applied to some singular
perturbation problems 1in slender body theory. The results obtained from the
hybrid method are compared with approximate solutions obtained by other
methods, and the degree of applicability of the hybrid method to broader prob-
lem areas is discussed.
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1. INTRODUCTION

A two-step hybrid analysis technique, which combines perturbation tech-
niques with the Galerkin method, promises to be useful in the analysis of a
wilde variety of differential equations type problems. The hybrid technique
was apparently first studied by Ahmed K. Noor and collaborators in conjunction
with the finite element analysis of geometrically nonlinear problems 1in
structural mechanics [22-39].

The Galerkin method [7] has, of course, been known and used for a long
time. But a principal problem associated with its successful application lies
in the choice of appropriate basis functions. It was proposed by Nagy [19]
and developed by others [1,2,20] that the expense of analysis of certain non-
linear structures problems can be sharply reduced by selecting a relatively
small number of linear buckling modes as trial functions for use in a Galerkin
technique. Then the set of solutions corresponding to a continuously varying
parameter, such as a load factor, can be approximately determined, at least
over some limited range of loading, with a relatively small number of non-
linear discretized equations, in place of the much larger number of nonlinear
finite element equations needed for modeling even relatively simple geometric
configurations.

In a series of papers [22-39]}, Noor and his collaborators have shown for
a variety of structural mechanics problems that the terms in a Taylor series
expansion of the solution of a parameterized system of discretized equationms
can be particularly effective as Galerkin trial functions (or basis vec-
tors). In addition, it has been repeatedly demonstrated that the "reduced-
basis" solutions can be useful for significantly larger values of the expan-

sion parameter than the truncated Taylor series solutions on which they are




based. Noor and collaborators [29,24] have also applied the same general

- principles but without discretization to some thermal analysis and structures

problems. A treatment of the reduced basis method from a mathematical point
of view is given by Fink and Rheinbolt [6].

Some general observations about the technique are the following. First,
in many perturbation problems, much effort has to be expended to compute each
additional term (analytically) in a perturbation expansion. Through the use
of the proposed hybrid method, the known perturbation terms can be exploited
more fully. Secondly, another way of viewing the technique is to recognize
that in many perturbation expansions the functional form of the higher order
terms can be well approximated by a linear combination of the lower order
terms. Thus, much of the effect of the higher terms may be included by apply-
ing the reduced basis technique to a small number of lower order terms.
Finally, preliminary unpublished investigations indicate that, while the use
of a Taylor series expansion is frequently limited by a finite radius of con—
vergence, the proposed hybrid method can sometimes yield good results even
well outside the radius of convergence.

It is our belief that the junction of perturbation and Galerkin tech-
niques can be useful in a wide variety of application areas, and in these
applications the hybrid technique will give better approximations than the
perturbation method alone. In this paper, we will present applications of the
technique, independent of finite element or finite difference methods, and in
an area well apart from structural mechanics. In particular, in the next sec-
tion, we shall describe the method in more detail and then apply it to a
simple two point boundary value problem in Section 3. 1In Sections 4 and 5, we

shall apply the method to two singular perturbation problems in slender body




theory. In Section 6, we make some observations about our method and indicate

some areas for further study.

2. DESCRIPTION OF THE METHOD

The method we wish to describe is a two~step hybrid analysis technique.
It is based upon the successive use of a straightforward perturbation expan—
sion method and the classical Bubnov-Galerkin approximation technique. In the
perturbation method, the solution to a particular problem inveolving a small
parameter is developed in terms of a series of unknown "perturbation" func-—
tions with preassigned coefficients, i.e., gauge functions. The perturbation
functions are usually determined by solving a recursive set of differential
equations which are, in general, simpler than the original governing differen-
tial equation. By contrast, in the Bubnov-Galerkin technique one seeks an
approximate solution to the problem in the form of a linear combination of
specified (known) coordinate functions with unknown coefficients. The coeffi~
cients are determined by demanding that the residual formed by substituting
the trial solution into the governing differential equations is orthogonal to
each of the coordinate functions.

While the perturbation and Galerkin methods are useful and have been
successful in providing approximate solutions to a wide variety of nonlinear
(and otherwise difficult) problems, each has certain drawbacks. The perturba-
tion method has at least two major drawbacks. First, as the number of terms
in the perturbation expansion increases, the mathematical complexity of the
equations which determine the unknown functions increases rapidly. Thus, in

most practical applications, the perturbation series is limited to only a few




terms. A second drawback to the perturbation method is the requirement of
" restricting the perturbation parameter to small values in order to obtain
solutions of acceptable accuracy. (These drawbacks of the perturbation method
have been recognized and several modifications or extensions have been
proposed, see e.g., Van Dyke [42] and Andersen and Geer [3].) The main short-
coming of the Bubnov—Galerkin method is the difficulty, from a practical point
of view, of selecting good coordinate functions.

To illustrate the general ideas of the hybrid (or '"reduced basis")

method, suppose we are seeking (an approximation to) the solution U to the

problem
(2.1) L(U,e) =0
where L 1is some differential (or integral) operator and € is a small

parameter. Here (2.1) holds in some domain D, and, in addition, U must
satisfy certain conditions on the boundary of D. Now the application of the
hybrid perturbation/Galerkin method can be divided into the following two dis-
tinect steps: (1) generation of the coordinate functions by a straightforward
perturbation expansion of U and (2) computation of the amplitudes of these
coordinate functions by using the Bubnov-Galerkin method.

To describe this idea in more detail, suppose that the solution to (2.1)
can be expanded by a perturbation technique into a series of the form

n-1

(2.2) U= 3

ko Uy (e) + O(Yn(c))

where each uy is independent of € and {Yj(e)} is an appropriate




asymptotic sequence of gauge functions. The equations to determine the uy
are obtained by substituting (2.2) into (2.1) and setting the coefficieat of
Yj equal to zero, for j = 0,1,ee+,n-1, In a similar manner, the bouadary
conditions for each uj are determined by using (2.2) in the boundary condi-~
tion for U.

The perturbation functions u; are now chosen as coordinate functions
for the Bubnov-Galerkin technique; and an approximation T for U 1is
sought in the form

n-1

(2.3) T = 8

jho 1
where the (unknown) parameters Gj = Gj(e) represent the amplitudes of the
coordinate functions uye To determine these parameters, we apply the Bubnov-
Galerkin technique to the governing equation (2.1). Thus, we substitute (2.3)
into (2.1) and demand that the residual be orthogonal to the =n coordinate

functions over the domain D, i.e.,

(2.4) g L(zgg ujGj,e)ukdx =0, k=0,1,e00,n"1,
Equations (2.4) represent a set of n equations for the n unknown ampli-
tudes. While (2.4) must, in general, be solved numerically, solving it is
much simpler than numerically solving (2.1). In particular, for a fixed value
of €, the solution to (2.4) is a point in n-dimensional space, where n is
reasonably small, while the solution of (2.1) is a continuous function.

We should note that this particular choice of coordinate functions over-

comes the main drawback of the Bubnov-Galerkin method. By the way they are



constructed, the perturbation coordinate functions are (under certain assump-
tions) elements of a set of functions which span the space of solutions in a
neighborhood of their point of generation. Thus, they should fully character-
ize the solution U 1in that neighborhood. Also, in many applications, the

functions u are determined by solving a set of linear equations, even

J
though the original operator L may be nonlinear. The first property is
necessary for the convergence of the Bubnov-Galerkin method, while the second
property enhances the effectiveness of the proposed hybrid method for solving
nonlinear problems.

Another important property of the proposed method is that the coordinate

functions, i.e., the perturbation functions, do not need to come from a

regular perturbation expansion. In fact, all that is needed is a formal

asymptotic expansion of the solution to (2.1) for small values of € in the
form of (2.2), where the {Yj(e)} are a set of appropriate gauge functions,
e.g., expressions which involve log(e) or fractional powers of €.

Thus, the proposed method has the potential of being applied to singular as

well as regular perturbation problems. In the following section, we shall

illustrate our method using the regular perturbation expansion of a simple two
point boundary value problem, while in Sections 4 and 5 we shall apply the

method to some singular perturbation problems in slender body theory.

3. A SIMPLE EXAMPLE
To illustrate the ideas just discussed, we consider the following simple

example. Consider the two-point boundary value problem:




(3.1)

with U(0) =0 and U(l) = 0.

The exact solution to this problem is U=(Q -e¥/a - ef) - x, which
exhibits boundary laver behavior around x = 1 for large values of € A
regular perturbation expansion of U yields a series of the form

, ntl

(3.2) U uj(x)s:j + 0(e )

]
i =~

j=1

where each uy is a polynomial in x of degree (j+1) and vanishes at x =
0 and 1. Following the ideas discussed above, we look for an approximate
solution U in the form

(e)

. 1
(3.3) U= 7 uj(x) §

b
where the amplitudes 6j are to be determined. To determine them, we sub—-
stitute (3.3) into (3.1) and apply the Bubnov-Galerkin criterion (2.4) to ob-

tain the set of equations

n
.4 = i = se0
(3.4) kz=l aj ’k(E) Gk bj (5)’ N 1,2, s
where
1 1
aj,k(e) = | uj(x)[ui'(x) - eup (x)]dx, bj =¢ | uj(x)dx.

0




In this case, the equations for the Gj are linear since the original

problem is linear. For example, setting n = 2 in (3.4), we find

8 =--——E:-—-—- 8 =_.i._._.
1 2 ’ 2 2 *
1+~ /60 1+ /60
For small values of &, we see that these expressions reduce to ¢ and
52, as they should. For n = 4, we find (by using the symbolic computation

system MACSYMA [16]) that

15120 + 420¢3
§, = % » Sy =€f)
15120 + 4206 + ¢
s 15120¢ 3 s s
3 ) G 4 - €°3°

15120 + 420e™ + ¢

(Note that the Gj’s remain finite as € becomes large, which suggests
that the approximate hybrid solution for this problem may be valid even for
large values of €.)

In Figures 1 and 2, we illustrate the comparison of the exact solution
with our approximate solution and the perturbation solution for n =2 and n
= 4, respectively. For n = 2, the three solutions agree very well for values
of € up to about e = 1. For larger values of €, the perturbation
solution begins to diverge from the exact solution, while ki still gives
reasonable approximations up to about e = 5. A similar comparison using
four terms in the approximate solutions shows that our hybrid solution is con-
sistently more accurate than the perturbation solution and gives reasonable
results, even within the boundary layer, for values of € up to about 10,

where the perturbation solution is meaningless.




Some of the reasons why our hybrid method provides a good approximation
in this case, as well as insights this example provides for the validity of
our method, will be discussed in Section 6. The application of our hybrid
method to several general classes of two point boundary value problems, as
well as various extensions of the method, are currently under investigation

and will be reported elsewhere.

4, POTENTIAL FLOW PAST A SLENDER BODY OF REVOLUTION

Slender body theory has been developed and applied largely in the context
of classical fluid mechanics. For example, potential flow past amn axially
symmetric slender body has been studied extensively since the work of Munk
[18]. This work is now a part of slender body theory, which is the theory of
fields about a slender body. It is discussed in detail, along with relevant
references, in various books, e.g., Thwaites [40] and Van Dyke [41], as well
as the paper by Newman [21]. More recent work on the axially symmetric flow
problem has been done by Moran [17], Landweber [15], and Handelsman and Keller
[12]. Recently, these results have been extended and generalized by Geer
[8]. 1In addition, the ideas of uniform slender body theory have been applied
successfully to problems in other areas, such as Stokes flow past a slender
body (Geer [9]), the electrostatic field about a dielectric slender body
(Barshinger and Geer [4]), the scattering of an arbitrary acoustical wave by a
slender body of revolution (Geer [10]), as well as a special case of electro-
magnetic scattering (Geer [11]).

To illustrate the applicability of our hybrid method to problems in this

area, we shall consider two problems which involve a slender body of revolu-
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tion. These problems will serve as model problems for the applicatioan of our
" method to more general problems in slender body theory. Typically, these
problems are not regular perturbation problems, since the solutions contain
terms involving log(e) as well as powers of e, where £ is the
slenderness ratio of the body (see e.g., Geer [8]). 1In addition, the solu-
tions to some of these problems involve series in inverse powers of log(e),

which converge (at best) very slowly, even for reasonably small values of €.

The specific problems we shall consider are: (1) potential flow past a
slender body, which will be considered in this section and (2) the electro~
static potential around a perfectly conducting slender body (Section 5). Each
of these problems contains features representative of larger classes of prob-
lems for which we believe the hybrid method will be of some significant
value. For example, the flow problem is a good representative of a singular
(as opposed to regular) perturbation problem involving a relatively rapidly
converging series. Similar series occur in the study of certain Stokes flow
problems (Geer [9]), acoustical scattering by a hard body (Geer [10]) or a
perfectly conducting body (Geer [11]), the potential field about a dielectric
body (Barshinger and Geer [4]), and certain problems involving oblate bodies
(Homentcovschi [l14]). The electrostatic problem involves a sequence of very
slowly converging series. Similar slowly converging series also occur in
investigations in several other problem areas, including certain other Stokes
flow problems (Geer [9]), scattering by a soft body (Geer [10]), and problems
involving the interaction of ships in shallow water (Davis and Geer [5]). For
simplicity, we shall consider here only a simple example in each of these
areas. These model problems will serve to illustrate the usefulness of our
method, and it will also be clear how our method can be applied to more

general problems in these areas.
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In this section, we shall consider the problem of determining the
potential flow around a slender body of revolution which is immersed in a
uniform stream parallel to its axis (see e.g., Handelsman and Keller [12] or
Geer [8], where this problem is generalized). We let the body be described
by r = (x2 + y2)1/2 = ¢/S(z) , for 0<z<1l (see Figure 3). Here ¢
iz the gclenderness ratio of the body, defined as the ratio of the maximum
radius of the body to its length, while S(z) describes the particular shape
of the body. We assume that S(0) = 0 = S(1), while S7(0) # 0 # $S°(1), where
the primes denote differentiation with respect to z. These last conditions
ensure that the body has a rounded (i.e., not sharp) nose and tail. (See Geer
[8] for a discussion of these conditions.) Then, following the 1ideas of
Handelsman and Keller [12], we represent the part of the velocity potential ¢
due to the presence of the body as the superposition of potentials due to
point sources distributed along a portion of the axis of the body and lying

entirely within the body. Thus, we write:

8
(4.1) 8 (rl,2) =z - | : £g e )dE
@ J(z-g)2+r2
where 4nf is the unknown density of the source distribution and a

and B, which determine the extent of the distribution within the body,
satisfy 0<a<pg XK1 (see Figure 3). The expression (4.1) satisfies
Laplace”s equation outside the body and reduces to =z at infinity. The con-
dition that the normal component of the velocity vanish on the surface of the

body, when used with (4.1) becomes

8 -
(4.2) se5@ =& J == £(g e ),
 Jz-e) e 3s(2)
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which must hold for 0 <z < I. Equation (4.2) is an integral equation for
the source density f(z,e), from which a and B can also be deter—
mined. In particular, Handelsman and Keller have shown that f can be deter-
mined as a series of the form

i-1

(4.3) fzye) = § €217 (logle?)is
i=1

i£o 1,j(z)

where the coefficient functions fi,j(z) can be determined recursively. In
particular, using some of the results of Handelsman and Keller, we can write

2

£(z,e) = = 57(2) + &* log(eD)E, () + %, ((2)

2,0

(4.4) + 068 1ogc?))?),

_1 . . _14 0,1..
f2,1(2) = 1z (8(2)877(2))”7, fz,O(Z) =353 (L 872,
where L?’l is a certain linear operator, defined precisely by Handelsman
and Keller (see also Geer [9], appendix B). The parameters a and B

can be determined as power series in 52 and are given by

- €42_ €\4 2,,€+,6 8 G .
a = Ci ()7~ CCy () '+ C(C)Cy + 2C)) () '+ O(e™), €, = §77(0)/3!
(4.5)
8 = 1= a, (D% 4,4, a4, a5 2@ 0e®, 4= ISPy

To illustrate the application of the hybrid method to this problem, we

shall treat a and B as known quantities (since they can be expressed

as Taylor series in ez, with several coefficients having been determined),
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and concentrate on the behavior of f with € Following the ideas pre-

sented in Section 2, we look for an approximation T to f 1in the form

n i-1
(4.6) zye) = [ 1 £

(z) &§,.(e)
1=0 j=0 1]

where the coefficients f; ;(z) are those which appear in (4.3) above and the
amplitudes 61 j(e) must be determined. To determine them, we substitute
]

(4.6) into (4.2), apply the orthogonality conditions, and obtain the condi-

tions:
n i-1

(4.7) b = . 6, .

k,1 L jZO %,1,1,3 1,5
where

E2 1
bk,l = é S (z)fk’l(z)dz
1 d B

- (z - €)
“k,1,1,j =/ £y

/ = OIS IANOTS
% Jag)4es(2)

Equations (4.7) are a system of linear equations for the unknown ampli-
tudes Gij’ which can be solved in a straightforward manner. As a special
example, we consider the case when n =1 and hence our approximate solu-

tion T is of the form

?(Z,G) = zl' S’(z)al,o’ 61,0 = bl,O/CI,O’I’O’
(4.8)
2 1 1 B
_ € - 2 = 1 ‘- d Z__ E -
bl,O_ 3—-£ (s7(z))"dz, ¢,0,1,0 Tg-é S (2)3;- — S (g)dgdz.
o /kz-ﬁ) 4+ “s(z)
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From (4.8) we can easily show that

2
8 =g + Y13410g(ez) + Y2€4 + 0(86(10g(82))2, as ¢ +» 0,

1,0
where Yy and Yo are certain constants. Hence, as e + 0, our
approximate solution (4.8) reproduces the first term in the perturbation solu-
tion (4.4) exactly, while also "anticipating' some of the € behavior of
the higher order terms. For the special case when the body is a prolate
spheroid, i.e., when S(z) = 4z(l-z), the integrals appearing in (4.8) can be

evaluated explicitly, yielding

52[ 1 - 482 - ZeZC(e)]—l

810 F
(4.9)
/ 2
C(e) = 210g[l—t—7é—és—i.

When (4.9) is inserted into (4.8), we find that (4.8) yields the exact solu-
tion to the integral equation (4.2) for this case. Thus, the hybrid method,
for this special case, yields the exact solution using only the "information"
contained in the first term of the perturbation solution. This point will be
diséussed in more detail in Section 6.

To obtain some idea of the accuracy of our approximate solution (4.6) for
other body shapes, we have applied our method to a class of "dumbbell" shaped
bodies, described by S(z) = 4bz(l-z){1-bz(l-z)}, with 2 < b < 4. 1In Figure
4, we illustrate our results for the representative case b =3 and for ¢ =
0.03, 0,07, and 0.11. 1In particular, we compare our hybrid solution (4.6)

with the perturbation solution (4.3) and a solution to (4.2) obtained by pure-
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1y numerical means (see the Appendix). As the figure clearly illustrates, the
hybrid solution gives consistently better results than the perturbation solu-
tion alone, especially for the case ¢ = 0,11, which appears to be close to
the radius of convergence of the perturbation solution. In addition, we have
used our hybrid solution in (4.1) to calculate the (non-dimensional) pressure
coafficient Cp(z) =1 - |§¢|2 on the surface of a slender body. In Figure

5, we have plotted C for the prolate spheroid with e = 0.3, using our

P
hybrid solution, the perturbation solution, and the exact solution. In Figure
6, we have made a similar comparison for our dumbbell shaped body with b = 3,
which was also discussed by Wong, Liu, and Geer [43]. Figure 5 illustrates
the facts that our hybrid method has reproduced the exact solution to the flow
problem and that the perturbation solution is (slowly) converging to the cor-

rect result. Figure 6 again illustrates that the hybrid method produces con-

sistently better results than the perturbation solution alone.

5. ELECTROSTATIC POTENTIAL FIELD ABOUT A SLENDER CONDUCTOR

We now consider the problem of determining the electrostatic potential
field about a perfectly conducting slender body of revolution. For simpli-
city, we again consider only a simple version of this classical problem, name-
ly, the case when there is no external field and the body is raised to unit
potential. Thus, using the notation of the previous section, we represent the

potential as

8
(5.1) é(rz,z) =/
a

f(z,e)dg
(z-§)2+r2
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where buf(z,e) is again the (unknown) source strength density., The ex~
pression (5.1) satisfies Laplace”s equation outside the body and vanishes at

infinity. The boundary condition on the surface of the body leads to the con-

dition
B 1
(5.2) / > f(g,e)d =1, 0<z<1
* a5 %s(2)
which is an integral equation for f(z,e), from which o and B can

also be determined. In particular, Handelsman and Keller {[13] have shown
that a and B are again given by the expressions (4.5), while f has

an asymptotic expansion of the form

(5.3) f(z,e) = ) ) ezm(log(ez))-me j(z)

m=0 j=1 ’
where the coefficient functions fm’j(z) can be determined recursively. In
particular, using some of their results (see also Barshinger and Geer [4],

where these results have been generalized to the case of a dielectric body) we

can write

fO,l(z) = -1,
fO,j+1(z) = fo’j(z)log{4z(1—z)/S(z)}
1
+{) {fo,j(i) - fo,j(z)}/lg - ZI dE’ ji= 1,2:'°'

(5.4) fl,l(z) =0
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fl,j+1(z) = fl,j(z)log{42(l-2)/s(2)}
1
tLOAE @) - £ @0l - el e

+ (A/8)s8(2)f7 (2) + Lfo’j(z), J=1,2,000,
0,j+1
where L 1s a certain linear operator defined explicitly by Handelsman and
Keller [13] (see also Geer [9], Appendix B).
We note that the series (5.3) contains a sequence of (at best) slowly
converging series involving inverse powers of log(ez). We have used the

expressions (5.4) to compute some of the f explicitly and then used these

m, j

results in (5.3) to find approximations for the actual singularity density

f(z,e). In Figure 7, we have plotted the approximation for f obtained from
(5.3) using different numbers of terms. These approximations are compared
with a solution to (5.2) obtained by purely numerical methods (see the Appen—
dix). As can be seen from the figures, several terms are needed in the

perturbation solution to obtain a good approximation, even for reasonably

small values of €.

We now apply our hybrid method to this problem and look for an approxi-

mate solution f 1in the form

J
n m

(5.5) )= ] ] £

(2)8_ . (e)
m=0 j=1 ] > J

’ ?

where the coefficients f_.(z) are those which appear in (5.3) and the

m, j

amplitudes Gm j are to be determined. To determine them, we substitute
’

(5.5) into (5.2), apply the orthogonality conditions, and obtain a set of

equations of the form (4.7), where
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1
bk,l = é fk’l(z)dz
(5.6)
1 8 1

. = f. . de £ .

%L1, T4 ] T 1,5 (8%, (2)dz
/Qz-ﬁ) +es(2)
Hence, the § again satisfy a system of linear algebraic equations,

m, j

which can be solved in a straightforward manner. In particular, for the

special case when n =0 and Jy =1 (i.e., f contains only one term), we
find that
1 8
2 2 -1/2 -
§g1 =~ [ [(z-8) +¢e"s(2)] /246 az37"
0,1
0 a
(5.7)
= (logez)-l
+ (loge?)~? fllo (4281°2) 14, + 0((Loge)™3) + 0(e%(1oge?) 2
g 5 g IO ge € ge .
Thus, 60 1 reproduces the first term in the asymptotic expansion (5.3)
?

exactly, while again "anticipating" some of the higher order ¢ behavior of
the solution. For the special case when the body is a prolate spheroid with
S(z) = 4z(1-z), we find that the integral appearing in (5.7) can be evaluated
explicitly to yield 60’1 = {C(e)}-l, where C(e) is defined in (4.9).
When this result is inserted into (5.5), we find that (5.5) yields the exact
solution to the integral equation (5.2). These points will be discussed more
fully in Section 6.

In Figure 7, we have also plotted the approximation to f(z,e) ob-

tained from our hybrid solution (5.5). As the figures clearly indicate, the

hybrid method consistently produces better approximations than the perturba-
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tion solution alone. Some of the reasons for these better approximations will

be discussed in the next section.

6. DISCUSSION AND OBSERVATIONS

Wa

(]

an now make some observations about the hybrid method and briefly
discuss, at least heuristically, why it seems to work as well as it does.

If we return to equation 2.2, we note that the perturbation method seeks
to find an approximate solution 6 to the true solution U of (2.1) in the
form of a finite linear combination of the perturbation coordinate functions
uj with specified amplitudes (gauge functions) {Yj(e)}. Our hybrid
method, on the other hand, seeks an approximate solution T in the form of
equation (2.3), which can be viewed as a linear combination of some of the

perturbation coordinate functions with amplitudes {6.} which are not

3 ,
specified a priori. Instead, the {Gj} are determined so that iy} will
be '"the best" approximation of the form (2.3) using the Galerkin criterion
(2.4). Thus, in a geometrical sense, the perturbation method seeks to approx-—
lmate the shape of the true solution with a specific linear combination of
the Uy, while the hybrid method seeks to approximate the shape of U with
the "best possible" (in the Galerkin sense) linear combination of a specified
subset of the {uj}. Thus, the perturbation method ignores, for example,
linear dependences among the {uj}, while the hybrid method implicitly takes
these dependences into account. An extreme case of this occurs in the prob-
lems in Sections 4 and 5 in the special case when the body is a prolate

spheroid. In this case, all of the perturbation coordinate functions are

constant multiples of the first function and hence are all linearly dependent
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(see, for example, Wong, Liu, and Geer [43]). The perturbation method thus
produces an infinite number of terms in a formal asymptotic series, but each
term has the same '"shape" as the first term, with only the amplitudes of the
terms differing., The hybrid method in essence "seeks out" (in the Galerkin
sense described) the total dependence of the shape of the solution on the
terms included in the approximation. Thus, in the case of the prolate
spheroid, since the exact '"shape" of the true solution is contained in the
first term of the approximation, the hybrid method produces the exact solu-
tion. Only the amplitude of the term needs to be modified.

The hybrid method, then, would seem to work well when the perturbation
coordinate functions {uj} exhibit a significant degree of linear dependence.
To illustrate this dependence for the examples we have presented, in Figures
8-10 we have plotted several of the perturbation coordinate functions used in
the hybrid approximation. 1In Figure 8, we have plotted the first 15 perturba-
tion functions for the simple example discussed in Section 3 (with each func-
tion normalized so that its maximum absolute value is 1). We recall from

their definition that each is a polynomial of degree j+l and hence they

Y3
are all independent. However, as can be seen clearly from the figure, on the
interval [0,1] these functions are highly dependent, with essentially only a
few different "shapes" occurring among the first 15 functions. We have ex-
pressed each of these 15 funtions in terms of the 4 functions obtained by
applying the Gram-Schmidt orthonormalization process to the first four func-
tions u; to us. In Table I, we have presented the Lp~norm of the
difference of these expressions and the original perturbation coordinate func-

tions. The norms confirm that fact indicated by Figure 8 that essentially any

linear combination of the first 15 coordinate functions can be well expressed
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in terms of just the first four uye Thus, we can say that the higher order
perturbation coordinate functions add only a small amount of new information
about the shape of the true solution. Presumably, these first four functions
contain much of the "shape information" contained in the perturbation func-
tions of order higher than fifteen as well. (We have examined several other
model two point boundary value problems and have found conclusions similar to
those just expressed. These examples, as well as other applications of our
method, are currently under investigation and will be reported elsewhere.)
These observations about the linear dependency of the perturbation functions
help to account for the accuracy of our hybrid solution. TIf, on the other
hand, the perturbation functions in a particular problem turn out to be only
weakly dependent on the domain of interest, then we would not expect our
hybrid solution to be much of an improvement over the perturbation solution.
In Figure 9, we have plotted the first four (normalized) perturbation
functions used in the potential flow problem discussed in Section 4. In Table
II, we have recorded certain L2—norms indicating the accuracy of representing
these functions, as well as the "exact" solutions for different values of ¢,
in terms of the first four coordinate functions. As the table clearly indi-
cates, the fourth perturbation function adds very 1little "new" information
about the shape of the solutions. In a similar manner, the first 10 perturba-
tion functions used for the electrostatic problem discussed in Section 5 are
presented in Figure 10, while Table III contains certain Lp~norms which
indicate the degree of dependency among the different functions and the
"exact" solutions. Again the degree of dependency that does exist helps to
explain why the hybrid method produces considerably better accuracy than the

perturbation method alone. (We have investigated several other slender body
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shapes in addition to the family of "peanut" shaped bodies presented here and
have again found results concerning dependency similar to those indicated
above.)

The ability of the hybrid method to pick out certain dependencies in
higher order terms can be seen explicitly in another way. To illustrate this
way for the problem considered in Section 5, we note that we can construct a
hybrid approximate solution of the form (5.5) with only one term. When this

is done, the single amplitude is given by (5.7). Using (5.4) and

80,1
(5.7), we note that the hybrid solution can be expressed as

T(z,e) = fO,l(Z)GO,l(E)

1

(6.1) = fo’l(z){(log(ez))_1 + (é fo’z(z)fo,l(z)dz)(log(t-:z))_2

+ 0((10g(62))_3)}.

The first term in the second line of (6.1) is just the first term in the
perturbation expansion (5.3). The second term, however, represents the
component of the second perturbation function fO,Z which is parallel to
fO,l' Similar observations hold for the other problems we have considered
when the éj’s are expanded for small values of €. Based upon this
discussion, there is another way of characterizing those problems for which
the hybrid method should be helpful. If the perturbation method produces an
approximate solutlon which seems to have about the right shape, but not the
proper amplitude, then the hybrid method should be applied. This was very

evident in the computation of the pressure coefficient for a prolate spheroid
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considered in Section 4 (see Figure 5). A more interesting example was con-
sidered by Davis and Geer [5], who used uniform slender body theory to
investigate the interaction of ships wmaneuvering in shallow water. Their
analysis produced expressions for the forces and torques acting on the ships
which had about the right shape (when expressed as a function of the distance
between the ships and compared with some experimental evidence), but not the
proper amplitude. Thus, it would seem plausible to expect that the hybrid
method should improve the accuracy of their results for this problem.

The convergence of the hybrid method as the number of terms in the ex~
pression increases has been 1investigated experimentally, but has not been
addressed formally. For 1instance, for our simple example of Section 3, we
have computed the relative Lo error of both the perturbation and hybrid
solutions for values of € between O and 15, using either n =2 or n =
4 terms in the approximation. The results are plotted in Figure ll. Clear—
ly, for each value of €, the error in the hybrid solution is diminishing
as n 1increases from 2 to 4. Asymptotically, as € approaches infinity,
these errors approach 0.9258 (n = 2) and 0.9045 (n = 4). It is interesting to
note that the perturbation solution has a finite radius of convergence
R = 2w, since the exact solution has singularities at € = 271, (The
denominator in the expressions for the deltas with n = 4 has a roots at
e = £6,306i, which are good estimates of these singularities.) The hybrid
solution provides a reasonable approximation for wvalues of € beyond the
radius of convergence of the solution upon which it 1s based, and presumably
this approximation will improve as n 1s increased. This point will be dis-
cussed at greater length elsewhere, when we apply our method to several other

two point boundary value problems.
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There are several ways in which the basic method we have presented can be
‘refined or extended. For example, a set of functions other than the set
{uj} can be used in the orthogonality conditions (2.4) to determine the
amplitudes {Gj}. That 1is, we could demand that the residual formed by
inserting (2.3) into (2.1) should be orthogonal to another set of functions,
say {vj}, which might be related, say, to the adjoint of the operator L.
In addition, some other criterion, in place of (2.4), might be used to deter-
mine the {Gj}, e.g., a least squares criterion. For computational pur-
poses, there may be some advantage to orthogonalizing and scaling the {uj}
before applying the conditions (2.4). Also, there 1is no reason why the
first n terws in the perturbation solution must be used as a basis for the
hybrid solution. In fact, it 1is certainly conceivable that certain higher
order perturbation functions might add more new shape information about the
solution than some lower order terms. In the problem considered in Section 5,
for example, we could consider forming a hybrid solution consisting of, for
example, fO,lr f0,2’ f0’3, and f1,2' The problem of choosing an "optimal"
set of perturbation functions to use as a basis for the hybrid solution (both
from a computational and theoretical point of view) is currently under invest-
igation and progress on this point, as well as those mentioned above, will be

reported as progress is made.
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APPENDIX

In this appendix, we shall describe briefly the iterative method we used
to solve equations (4.2) and (5.2) numerically. Using a result of Handelsman
and Keller [12], we see that the right side of equation (4.2) approaches
2f{z,e) as c + 0. Thns, if we add and subtract 2f(z,e) on the right
side of (4.2) and then define

= - ;2

(A.1) F(z,e) = 4f(z,e)/e",
we find that (4.2) can be written as

(A.2) S°(z) = F(z,e) + L(F(z,¢e)),

where the linear operator L 1is defined by

B -
(A.3) L(F(z)) = (1/2) {(d/dz) [ 2=t F(t) dt - 2F(2)}.

& Jeze)t4els(2)

From Handelsman and Keller [12], it follows that L(F(z)) = O(eZF(z)) as
e » 0, This suggests that we could solve equation (A.2) by defining the

sequence of approximations {Fk(z)} by

(A.4) Fo(z) S$7(z)

(A.5)

(z) L(Fk(z)), k=0,1,2,000 .

Fk+1
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The iterative scheme (A.3)-(A.5) was used to solve equation (4.2) numerical-
ly. As indicated in Section 4, the limits of integration «a and B  were
treated as known quantities, using the Taylor series expansions obtained by
Handelsman and Keller, as well as several more terms which we calculated using
the symbolic computation system MACSYMA [16]. The terms in these series were
used with the ratio and root tests to estimate the radius of convergence of
the formal perturbation series, as mentioned in Section 4. We found that the
scheme (A.3)-(A.5) converged rather quickly for a £z <B, but converged

rather slowly for 0<z<a or <zl Nevertheless, the scheme did

produce (eventually) the correct solution to equation (4.2) on the entire

interval 0<z <1 for all the examples we tried.

Equation (5.2) can also be solved by iteration by first rewriting it as

(A.6) 1 = G(z,e)f(z,e) + M(f(z,e)),
B 2 2
(A7) 6(zye) = 1 at = 105872 G2) K e (2))
¢ Jz-t) e 2s(2) a-z+/ (a-2) e 2s(2)
B8 -
(4.8) M(E(z,e)) = [ EEae) = £lzse) g,

@ /Qz-t)2+ezs(z)

Using a result from Handelsman and Keller [13], we see that
G(z,e) = 0(log(e?))  and M(F(z)) = O(F(z)), as & + O.  These facts

suggest that we define a sequence of approximations by

(A.9) fo(z,e) = 1/G(z,e),




~-3]1~

(A.IO) fk+1(z,€) = {1 - M(fk(z,s))}/G(z,e), k = 0’1’2”" .

We found that the scheme (A.9)-(A.10) converged to the solution of (5.2) for
all the cases we tried, but with the same type of non-uniform convergence as

noted above.
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Table 1
n
u(z) 1 2 3 4
uj(z).
j=1 0 0 0 0
2 1.000 0 0 0
3 0.189 0.189 0 0
4 1.000 0.100 0.100 0
5 0.225 0.225 0.014 0.014
6 1.000 0.123 0.123 0.005
7 0.233 0.233 0.018 0.018
8 1.000 0.129 0.129 0.007
9 0.235 0.235 0.020 0.C20
10 1.000 0.130 0.130 0.008
11 0.235 0.235 0.020 0.020
12 1.000 0.130 0.130 0.008
13 0.235 0.235 0.020 0.020
14 1.000 0.131 0.131 0.008
15 0.235 0.235 0.020 0.020
U (e = 2) 0.122 0.013 0.001 0.000
U =35) 0.269 0.067 0.014 0.003
U (¢ = 10) 0.403 0.164 0.062 0.021

n
Lo—norms of the differences u(x) - ) ajgj(x) for the simple two-
j=1
point boundary value problem of Section 3, where the functions u(x) have
been normalized and the functions gj(x) have been obtained from the
perturbation functions uy to uy by the Gram—-Schmidt process. The numbers
appearing in the table are the quantities
n 1
(r- 73 a%)l/z, where a, = [ u(z)g.(z)dz.
i=1 3 3 0 ]
J—
Thus, the smaller the entry the better the function is approximated. The last

three rows in the table correspond to the exact solution of the problem (3.1).
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Table II
f(z) 1 2 3 4
f1.0 0 0 0 0
b4
f2,1 0.647 0 0 0
£9 0 0.975 0.045 0 0
f3’2 0.885 0.445 0.095 0
f (¢ = .03) 0.045 0.000 0.000 0.000
f (¢ = .07) 0.195 0.032 0.000 0.000
f (c = .11) 0.525 0.276 0.032 0.032
Lp—norms of the differences f(z) - ajgj(z), where the functions

the potential flow perturbation coefficient functionms

f3 2 by the Gram-Schmidt process.
k]

quantities

The last three rows 1in the table correspond to the solution of the integral

n
(-3
i=1

2,1/2

a.) ’

|

321
f(z) have been normalized and the functions

The numbers appearing in the table are the

where a,
J

equation (4.2) obtained numerically.

f(z)gj(z)dz.

gj(z) have been obtained from

£1,0 f2,1» f2,0, and
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Table IIIX
n
£(z) 1 2 3 4
fO,j(z)=
j=1 0 0 0 0
2 0.823 0 0 0
3 0.985 0.032 0 0
4 0.990 0.089 0.000 0
5 0.991 0.158 0.000 0.000
6 0.991 0.245 0.000 0.000
7 0.992 0.349 0.032 0.000
8 0.993 0.468 0.055 0.000
9 0.994 0.592 0.084 0.000
10 0.995 0.706 0.126 0.000
11 0.997 0.799 0.179 0.000
12 0.998 0.868 0.239 0.000
13 0.998 0.915 0.302 0.000
14 0.999 0.946 0.370 0.045
15 0.999 0.965 0.439 0.071
f (¢ = 0.3) 0.045 0.000 0.000 0.000
f (e = .07) 0.195 0.032 0.000 0.000
f (e = .11) 0.525 0.276 0.032 0.032
n
Lo-norms of the differences £(z) - ) ajgj(z), where the functions
j=1

f(z) have been normalized and the functions gj(z) have been obtained from

the electrostatic potential perturbation functions f0,19 f0,2> fo,3, and

fo.4 by the Gram—Schmidt process. The numbers appearing in the table are the
b4 *

quantities

(1 -
3

He1
[+H]

2), where a, = [ f(z)g.(z) dz.
1 3 j

The last three rows in the table correspond to the solution of the integral

equation (5.2) obtained numerically.
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FIGURE CAPTIONS

Comparison of solutions to the two point boundary value problem (3.1):
(o o o 0 0) exact solution, (- - - - - ) perturbation solution, ( )

hybrid solution, using two terms in the approximate solutions for (a)
€ =2 and (b) ¢ =5,

Comparison of solutions to the two point boundary value problem (3.1):
(o 0 0 0 0) exact solution, (- - - - - ) perturbation solution, ( )
hybrid solution, using four terms in the appioximate sclutions for (2)
£=5 and (b) € = 10,

A typical slender body of revolution, with an indication of the
coordinate system and the region of distribution of singularities.

Comparison of approximate solutions to the integral equation (4.2)
obtained numerically (o o o o o), using the perturbation solution (- - -
- =), and using the hybrid solution ( ) for: (a) € = 0.03; (b)

e = 0.07; (c) e = 0.11. In (a), only one term was used in the
perturbation and hybrid solutions, while in (b) and (c¢) three terms were
used.

Pressure coefficient for a prolate spheroid with e = 0.3 using the

exact solution (o o o o o), the perturbation solution (- - - - - ) with
one, three, and six terms, and the hybrid solution ( ) with one
term.

Pressure coefficient for a peanut shaped body of section 4 using the
solution obtained numerically (o o o0 o o), the perturbation solution (-
-~ — = =), and the hybrid solution ( ) for (a) € = 0.03, (b)

€ = 0,07, and (¢) & = 0,11, In (a), only one term was used in the
perturbation and hybrid solutions, while in (b) and (c) three terms were
used.

Comparison of approximate solutions to the integral equation (5.2)
obtained numerically (o o o o o), using the perturbation solution (- - -
- -), and using the hybrid solution ( ) for: (a) € = 0.03; (b)

e = 0.07; and (¢) e = 0.11. In each case, four terms were used in
the perturbation and hybrid solutions.

The first 15 perturbation coordinate functions uj(x) appearing in
equation (3.2). The functions u; to u3 are “plotted with solid
lines, while the remaining functions appear as dotted lines. Each
function has been normalized so that its maximum absolute value is 1.
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The first four potential flow perturbation coordinate functions

£; 5(2) appearing in equation (4.3). The functions have been
notinalized so that each one is equal to 1l at z = O,

The first 10 electrostatic potential perturbation coordinate functiouns

£fo .(2) appearing in equation (5.3). The functions have been
normalized so that each one is equal to 1 at z = 0.

Plot of the relative L, error between the exact solution to problem
(3.1) and the perturbation solution (- = = ~ =) and the hybrid solution
( ) using 2 and 4 terms in these approximate solutions.
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